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Comparison of Three Modeling Techniques  

To predict the Spatial Distribution and 

Environmental Preferences of Red Kite 

(Milvus, milvus). 

ABSTRACT  

Intro: As a recovering species it is important to understand the habitat                                          

preferences of Red Kites. Species distribution models have become 

powerful tools in understanding habitat distribution. However, the 

effect of using different models on predictions remains unclear 

especially when using spatially biased species presence data. 
 

Methods: Maximum entropy (MaxEnt), boosted regression trees 

(BRT) and Random Forests (RF) predictions of Red Kite habitat were 

generated for Wales from spatially biased presence only data. 15 

iterations were produced and averages were compared. 
 

Results: All models obtained a AUC greater than 0.7. However, the 

emphasis on environmental variables differed, leading to dissimilar 

spatial predictions of habitat suitability.  
 

Conclusions: Due to deviation in spatial predictions of Red Kite 

habitat, conservation efforts should employ an ensemble of species 

distribution models. Results should be interpreted with reference to 

any bias in the species distribution data.  

Keywords: 
Red Kite, Species 
Distribution Models, 
MaxEnt, Boosted 
Regression Trees, 
Random Forests, 
Bias. 

INTRODUCTION 

Global biodiversity loss is occurring at 

unprecedented rates (Sala et al., 2000; 

Atley and Morad, 2009; Durant, 2014; 

McCallum, 2015). Therefore, it is important 

to understand the environmental changes 

which increase biodiversity (Yusoff, 2011; 

Seippel et al., 2012). In the UK in 1946 only 

seven breeding pairs of Red Kite (Milvus 

milvus) existed in mid-Wales (Davis, 1993; 

Newton et al., 1996; Evans et al., 1999), 

However there are now 1600 (Evans et al., 

2008; RSPB, 2012). It is critical to 

understand the nature of Red Kite habitat 

in order to protect its current extent and to 

facilitate biodiversity increase, through 

reintroduction of species with similar 

characteristics (Evans et al., 2008).   

 

However, the factors limiting the global and 

national scale dispersal of Red Kites 

remain largely unknown (Heuck et al., 

2013). Species observation data is typically 

limited to subsets due to a lack of resources 

and logistical constraints (Elith et al., 2006; 

Oppel et al., 2012). However, the advent of 

inexpensive computing power and remote 

sensing products, has led to increases in 

the use of statistical models, to predict 

species distributions across large areas 

(Elith and Leathwick, 2009; Tremblay et al., 

2009; Hoffmann et al., 2014). For example, 

a study by Heuck et al. (2013) used land 

cover products and generalised additive 

models (GAM) to investigate the effect of 

land cover on Red Kite distribution in 

Germany. The study concluded that the 
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interactions between anthropogenic and 

climatic variables were important in 

determining habitat.  

Numerous different species distribution 

models (SDM) have been used to map the 

extent of terrestrial bird habitat (Gutzweiller 

and Barrow, 2001; Schulte et al., 2005; 

Fuller et al., 2007; Vallecillo et al., 2009). 

Although model performance has been 

compared several times (Segurado and 

Araújo, 2004; Elith et al., 2006; Elith and 

Graham, 2009; Marmion et al., 2009a) the 

exact effect different SDM methods have 

on predictions remains unclear (Elith and 

Graham, 2009). Especially when handling 

biased, low-density species sighting data 

(Luck, 2007; Hernandez et al., 2006; Opell 

et al., 2011). However, the majority of 

species information is randomly sampled 

presence-only data (Evans and Hammond, 

2004; Elith et al., 2006; Opell et al., 2011; 

Buk and Knight, 2012; Zhu et al., 2015). As 

SDM outputs are a function of both data 

quality and handling it is important to 

understand how these factors influence 

each other (Hernandez et al., 2006). 

Especially as there is growth in the use of 

SDM to set conservation priorities with the 

aim of increasing biodiversity (Araujo, 

2005; Opell et al., 2011).  

This study aims to compare the deviation in 

three SDM predictions of Red Kite habitat 

across Wales. Results will inform 

conservation practices about the variation 

in modelling techniques. In addition, the 

study aims to explore the effect of 

unrepresentative sighting data on SDM 

predictions.   

SPECIES DISTRIBUTION MODELS 

Universally SDM require species location 

data and environmental variables (Elith et 

al., 2006; Marmion et al., 2009a). SDM 

assume sighting locations exhibit the 

environmental characteristics of good 

habitat (Elith et al., 2006). Therefore, it is 

important the samples are representative 

and unbiased to produce the most accurate 

results (Elith and Leathwick, 2009; 

Marmion et al., 2009b). A study by 

Hernandez et al. (2006) found some SDM, 

like MaxEnt, can produce meaningful 

results with 5-10 sightings. However, a 

higher number is preferable as it allows the 

model to refine the relationship between 

predictor and variables (Elith et al., 2006).   

Machine learning SDM have gained 

popularity due to their ability to handle large 

iteration numbers and accurately fit non-

parametric data (Hastie et al., 2009; Elith 

and Leathwick, 2009). Three commonly 

used SDM are maximum entropy (MaxEnt), 

boosted regression trees (BRT) and 

random forests (RF) (Elith et al., 2006; Elith 

and Leathwick, 2009). 

MaxEnt contrasts presence locations and 

background values, derived from 

environmental parameters, to calculate 

species suitability (Phillips et al., 2006; 

Guillera-Arroita et al., 2012). The theory 

operates on the principle that, of the 

numerous possible species distributions, 

the one which fits environmental 

constraints and is associated with 

maximum information entropy is correct 

(Phillips et al., 2006). MaxEnt also allows 

for consideration of sampling bias by 

weighting data (Phillips et al., 2006).  

Unlike MaxEnt, BRT and RF require 

presence and absence locations (Hastie et 

al., 2009). Where solely presence data is 

available pseudo-absence can be 

generated from the un-sampled study area 

(Phillips et al., 2009). However this 

introduces error, as absence locations may 

contain un-sampled presence (Phillips et 

al., 2009). BRT produce a regression 

model, from a stage wise progression of 

classification trees (Elith et al., 2008). 

Model parameters, like the complexity and 

learn rate of each tree, can be varied in 

order to best fit the data (Elith et al., 2008). 
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RF also constructs a regression model, but 

bootstraps the data to create many small 

inaccurate classification trees (Breiman, 

2001; Marmion et al., 2009a). Each tree 

captures different regularities between 

species and environmental data, which are 

combined into a predictive model (Breiman, 

2001).  

THE RED KITE IN WALES, UK 

Welsh forests are typically a mixture of 

conifer and broadleaf deciduous trees 

(Natural Resources Wales, 2016). These 

typically have dense canopies which are 

not favoured by ‘swooping’ Red Kite 

hunting techniques (Davis and Davies, 

1973; RSPB, 2012). However, the 

agricultural land cleared for crops and 

livestock may be more suitable for hunting. 

As the small mammals Red Kites consume 

are visible and carrion is readily available 

(Davis and Davis, 1981; Natural Resources 

Wales, 2016).  

In Welsh lowland areas the mean 

temperature is 9.5-10.5oC (Met Office, 

2013). Temperature decreases by ~0.5oC 

for every 100m gain in altitude (Met Office, 

2013) and is subject to seasonal variation 

of ~20oC (Met Office, 2015). In Europe Red 

Kites are seasonal visitors. However, 

Welsh Red Kite are residents, as such they 

may favour areas with lower seasonal 

variability (RSPB, 2012). The proximity of 

Wales to the North Atlantic Oscillation 

(Hurrell, 1995) coupled with variable 

topography creates high precipitation 

levels (Met Office, 2013). Although 

precipitation does not appear to effect Red 

Kite habitat, the aspect of the hilly terrain 

may affect the locations of breeding sites 

(Newton et al., 1996). 

METHODS 

RED KITE SIGHTING DATA 

In order to obtain enough data to accurately 

model Red Kite distribution, presence only 

data from several sources was combined, 

see Table 1. Data was cleaned to remove 

duplicates and sightings were 

georeferenced to the origin of Ordinance 

survey (OS) grid squares. As previously 

mentioned, inaccurate sighting data can 

introduce error, but climatic characteristics 

do not significantly vary within OS girds 

(New et al., 2000).   

Table 1 | Sources and number of records 

of Red Kite sighting data. 

Source Sightings 

BIS Casual Records 2013 40 

Breconshire Birds 2013 20 

Miscellaneous Unitary 
Authorities 

24 

iRecord 8 

MapMate 99 

Mixed Taxa Records 10 

Casual Records 18 

Unknown 25 

Total 244 

 

ACCOUNTING FOR BIAS 

As Figure 1 illustrates sightings were often 

near roads, conservation areas and 

population centres. This introduces bias as 

higher populations often cause increased 

sighting records of the same number of 

Red Kites (Oppell et al., 2012; Howard and 

Davis, 2015). As previously mentioned 

SDM assume sighting locations to be 

typical for the species (Elith et al., 2006; 

Syfert et al., 2013). In MaxEnt bias was 

accounted by the inclusion of a bias grid, 

which gave clusters of sightings and those 

near roads smaller weighting in analysis 

(Phillips et al., 2006; Syfert et al.,2013). In  
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Figure 1 | Spatial bias of sighting data near 

conservation areas, population centres and 

main roads.  

order to account for bias in the BRT and RF 

models, sightings within 2500m of another 

were removed. Furthermore, absence 

points were only generated within 500m of 

a primary road in order to counteract the 

bias in the presence data (Phillips et al., 

2009; Lobo and Tognelli, 2011; Barbat-

Massin et al., 2012).    

ENVIRONMENTAL DATA 

Relevant environmental variables were 

obtained from a variety of sources, see 

Table 2. Variable collinearity was tested 

(Frank, 2016). Where collinearity was 

calculated >0.7 one variable was removed.   

MODEL PARAMETERS 

See Table 3 for list of modelled 

environmental variables. 

MAXENT 

MaxEnt version 3.3.3K was used to model 

Red Kite distribution. MaxEnt was selected 

due to its increasing popularity as a SDM 

and ability to model with small numbers of 

sighting data sets (Phillips et al., 2006; 

Hernandez et al., 2006). The convergence 

percentage was set at 0.00001. In order to 

generate precision data, the model was run 

fifteen times under a bootstrap replication 

with 20% of the sighting data used for 

testing (Elith et al., 2006). 

Table 3 | Environmental and 

anthropogenic variables used in the final 

models. 

 Environmental Anthropogenic 

Aspect Area Farmed 

Distance to Stream 
Distance to 

Conservation Area 

GPP Number of Crops 

Max Precipitation Habitat Land Cover 

Min Temperature  

Mean Temperature  

Slope  

Temperature 
Seasonality  

TWI  

 

BOOSTED REGRESSION TREES 

The GBM and Dismo packages (Ridgeway, 

2015; Robert et al., 2016) were used to 

model Red Kite distribution. BRT was 

selected due to its popularity as a SDM 

(Elith et al., 2006). Model parameters were 

determined using the GBM.Step function 

(see, Elith et al., 2008) and systematically 

varying learning rate and bag fraction (Elith 

and Leathwick, 2016). A tree complexity of 

3 provides the lowest levels of predictive 

deviance for data of under 250 sightings 

(see, Elith et al., 2008). The final prediction 

had a learning rate of 0.0001, a bag fraction 

of 0.5 and produced over 1000 trees. The 

model was run fifteen times to test 

precision and 20% of the sighting data was 

used for testing. 



120077120 

5 
 

Table 2 | Environmental variables, source and validation.  

Environmental Variable    Source Pixel Size (m) Validation 

Elevation OS Contours 30 
Counters produce a hydrologically correct DEM. Elevation causes variance in macro-climate and 
slope (MetOffice, 2013). 

Slope Elevation data 30 Slope can affect the ‘swooping’ of Red Kite hunting (RSPB, 2012). 

Aspect Elevation data 30 Aspect can affect the nesting habits of Red Kites (Newton et al., 1996) 

Topographic Wetness 
Index (TWI) 

Elevation data 30 
Increased soil moisture can lead to increased numbers of mammals, Red Kite prey (Davies and 
Davis, 1973; RSPB, 2012) 

Euclidean Distance to 
Stream Network 

Elevation data 
and Natural 

Resources Wales 
30 Streams provide water for Red Kites, potential prey and livestock. 

Euclidean Distance to 
Conservation Area 

Natural 
Resources Wales 

30 Conservation areas are designed as habitat and may introduce bias in sighting numbers 

Landscape Scale Habitat 
Mapping 

Natural 
Resources Wales 

30 
Land cover has been found to be important to Red Kite, this land cover classification puts emphasis 
on habitat type. 

Land Cover 
Classification 

Landsat 5 
Imagery 

30 Nine class land cover classification of Wales. 

Gross Primary 
Productivity (GPP) 

MODIS 1000 
Vegetation productivity can relate to crop and forest areas, both potential Red Kite habitat (Davies 
and Davis, 1973). 

Area Farmed 
2013 Agricultural 

Census 
30 

Kriging interpolation of area farmed from data points at 2km intervals. Agricultural areas are 
considered to be good Red Kite habitat (RSPB, 2012). 

Number of Livestock 
2013 Agricultural 

Census 
30 

Kriging interpolation of livestock numbers from data points at 2km intervals. Livestock keep grass 
levels short and stop succession which creates a good environment for Red Kites to hunt. In addition, 
they can provide carrion (RSPB, 2012).  

Number of Crops 
2013 Agricultural 

Census 
30 

Kriging interpolation of crop numbers from data points at 2km intervals. Ploughing and harvesting 
practices can provide good hunting conditions for Red Kite (RSPB, 2012).  

Mean Temperature BIOCLIM 1000 Climatic Variable 

Temperature Seasonality BIOCLIM 1000 Seasonal variation may have an effect on resident Red Kites (RSPB, 2012). 

Maximum Temperature BIOCLIM 1000 Some areas may be undergo too much seasonal variation. 

Minimum Temperature BIOCLIM 1000 Some areas may be too cold in Winter. 

Temperature Range BIOCLIM 1000 Seasonal variation may have an effect on resident Red Kite habitat (RSPB, 2012). 

Maximum Precipitation BIOCLIM 1000 Climatic Variable, may correlate with areas with more farming and GPP. 

Minimum Precipitation BIOCLIM 1000 Climatic Variable, may correlate with areas of less farming and GPP.  
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 RANDOM FORESTS 

The randomforest and rfUtilities packages 

in R (Liaw and Weiner, 2002; Evans and 

Murphey, 2014) were used to model Red 

Kite distribution. As variation of model 

parameters had little to no impact on model 

variance RF was run using appropriate 

defaults (see, Evans and Murphey, 2015 

and Breiman et al., 2015). The model was 

fitted using 1001 trees and tested with a 

training sample of 20%. Fifteen iterations 

were run to test model precision.   

PROCESSING OF OUTPUTS AND 

ACCURACY ASSESMENT 

Outputs were manipulated in R (v.3.2.4), 

ArcMap (v.10.3) and Microsoft Excel to 

display comparable data. Area Under 

Curve (AUC) values, a standard measure 

of SDM accuracy (Elith et al., 2006; Elith 

and Leathwick, 2009), was produced for 

training and test data for each run of every 

SDM.  

RESULTS 

MODEL ACCURACY 

All iterations of every model were above 

0.7 AUC and therefore, are considered to 

be accurate (Phillips et al., 2006). BRT 

produced the lowest mean AUC scores 

from both training and testing data, but also 

had the lowest standard deviation (0.005 

and 0.024). RF models training AUC was 

comparatively high and precise, but the test 

data had the most standard deviation 

(0.05), suggesting that some predictions 

could be considerably imprecise, Figure 2. 

MaxEnt produced the median training and 

testing AUC values with similar standard 

deviation to BRT.  

INFLUENCE OF ENVIRONMENTAL 

VARIABLES  

Although the SDM produced similar AUC 

values, the level of importance assigned to 

the different environmental variables 

changed drastically, Figure 3. For example, 

seasonality was one of the two most 

influential variables for both BRT and RF, 

but had the least influence on MaxEnt 

predictions. In addition, similar rankings of 

importance of environmental variables 

were not produced by the same 

combination of models. In some cases, 

BRT and RF agree (GPP) and others 

MaxEnt and RF (maximum precipitation). 

This suggests that there is no significant 

relationship between different SDM and 

level of importance assigned to 

environmental variables.     

 

Figure 2 | AUC values for MaxEnt (blue), 

BRT (green), RF (purple). Test data AUC is 

denoted by the darker colour. Standard 

deviation is shown.  

RED KITE HABITAT DISTRIBUTION 

PREDICTIONS 

The different levels of influence assigned to 

environmental variables caused differing 

predictions of spatial distributions of good 

habitat, see Figures 3, 5 and 6. Despite the 

removal of some bias from the clustered 

sightings in the south east, both BRT and 

RF mapped highly suitable habitat in this 

area. MaxEnt combated the data bias most 

effectively. Figure 5 illustrates that all three 

models predicted areas of habitat in mid 

and West Wales, but the exact location of 

habitat often varied, Figure 6.  
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Figure 3 | In order to compare the relative influence across different models environmental 

variables were standardised into ranks of importance, where thirteen is the most influential on 

model output. MaxEnt = blue, BRT = green, RF = purple. 

DISCUSSION 

ENVIRONMENTAL FACTORS FOR RED 

KITE CONSERVATION IN WALES  

Unlike the results in Figure 3, previous 

distribution modeling of Red Kites found 

land cover to be an important factor in 

determining good habitat (Heuck et al., 

2013). However, Heuck et al. (2013) may 

over represent land cover, as research 

cautions against the use of numerous land 

cover products in SDM (Vallecillo et al., 

2009; Princé et al., 2013; Bryan et al., 

2015). Land cover is a function of a variety 

of different processes and it is unclear how 

effective SDM are at modeling the 

relationships between these processes, 

environmental variables and species 

locations (Smith, 2003; Vallecillo et al., 

2009).  

The differences in environmental variables 

likely caused the disparity between the 

studies. For example, agricultural land, an 

established habitat type of Red Kites 

(Davies and Davis, 1973; RSPB, 2012), 

was better represented by other 

environmental layers like GPP and Area 

farmed, than land cover. These factors 

were important across the three SDM 

results but were unrepresented by Heuck 

et al. (2013) (Figures 3 and 4).  

Figure 4 | Fitted function and logistic 

output of GPP and area farmed variables 

for BRT and MaxEnt 
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Figure 5 | Locations of habitat suitability displayed in percentiles. Top thirty, twenty, and ten percent for MaxEnt, boosted regression trees and 

random forests.  
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Figure 6 | Standard deviation of each pixel between the MaxEnt, boosted regression trees 

and random forest models. Areas with high standard deviation are shown in purple and low 

deviation in green. Areas of greatest standard deviation were generally locations of bias.

Often, the same interactions between Red 

Kite and the environment can be inferred 

from the three SDM despite the differing 

importance assigned to environmental 

variables (Elith et al., 2006; Hernandez et 

al., 2006). The models suggest that 

temperature seasonality could affect Red 

Kite habitat. Seasonal temperature 

variation was a highly influential predictor in 

both BRT and RF and MaxEnt found both 

min and mean temperature to be of 

importance, which could be related to 

seasonality, see Figure 3 and 7 (Li et al., 

2015).  

MODELS ABILITY TO HANDLE 

UNREPRESENTATIVE SIGHTING DATA 

In order to utilise the majority of current Red 

Kite sighting statistics, it is important for  

 

Figure 7 | Fitted function and logistic 

output of Temperature Seasonality, 

minimum temperature and mean 

temperature variables for BRT and MaxEnt 
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models to produce results accurate to 

ground truth from poor quality sighting data 

(Elith et al., 2006; Elith and Leathwick, 

2009). In this regard MaxEnt removed bias 

most effectively, likely due to the unique 

manner in which it handles environmental 

and background data (Phillips et al., 2006). 

This finding agrees with other studies 

conclusions; that MaxEnt is able to produce 

accurate predictions from small, biased 

data sets (Hernandez et al., 2006; Elith et 

al., 2006; Syfert et al.,2013; Hefley and 

Hooten, 2015; Marshall et al., 2015).  

However, the lack of deviation in BRT AUC, 

Figure 2, suggests BRT may define the 

relationships between environmental 

variables and Red Kite more precisely. 

Therefore, accurate sighting data could 

allow BRT to outperform MaxEnt (Elith et 

al., 2006; Elith and Leathwock, 2009; 

Couce et al., 2012; Hertzog et al., 2014). 

RF most likely requires more species data 

to produce a model less subject to 

overfitting with precise test AUC values, 

Figure 2 (Hernandez et al., 2008; Feeley 

and Silman, 2011). However, all the 

models provide useful data regarding the 

environmental interactions of Red Kites, if 

the nature of the sighting data is properly 

understood and accounted for in 

interpretation of results. 

However, this is not always possible. 

Figures 1 and 8 illustrate that locations 

close to conservation areas exhibit 

increased Red Kite presence. This could 

be due to the use of conservation areas for 

leisure, creating a bias in sightings (Elith et 

al., 2006). However, as conservation areas 

are actively managed to increase 

biodiversity, the area is also likely to exhibit 

the characteristics of good Red Kite 

habitat. Therefore, the effects of bias and 

habitat are impossible to separate. 

 

Figure 8 | Effect of increased distance 

between sighting location and conservation 

area on computed probability of presence 

in MaxEnt.  

UTILITY OF MODELS FOR 

DETERMINING CONSERVATION 

AREAS 

Figure 6 illustrates that modelling methods 

have the potential to impact the selection of 

geographic regions for conservation. 

Despite similar accuracy measurements 

(Figure 2) the nature of predictions varies 

drastically due to different emphasis and 

handling of environmental variables (Elith 

et al., 2006; Phillips et al., 2006; Elith et al., 

2008). The differences in fitting and 

function between techniques are a likely 

explanation for this phenomenon (Oppel et 

al., 2012; Elith and Graham, 2009). For 

example, boosted regression and random 

forest classification trees rely on fitting 

constants to regions which have 

homogenous responses to predictors (Elith 

et al., 2008; Breiman, 2001). If the majority 

of trees have the same environmental 

variable in the first branch, this variable will 

have a large effect on the model prediction 

(Elith et al., 2006; Elith et al., 2009).  

Whereas, MaxEnt determines importance 

through multiple environmental variables 

simultaneously (Phillips et al., 2006). 

Therefore, the environmental variables are 

handled differently, redistributing emphasis 
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and habitat predictions (Hernandez et al., 

2006; Oppel et al., 2012). This results in 

similar AUC scores but different selection 

of habitat, and priorities for conservation, 

Figure 5.  

A study by Oppel et al. (2012) compared 

five SDM, including MaxEnt, BRT and RF 

to determine seabird conservation areas. 

They concluded that similar accuracy and 

precision does not equate to the same 

emphasis of environmental variables and 

distribution predictions, a finding that is 

consistent with other studies (Elith and 

Graham, 2009; Ready et al., 2010). 

However as previously discussed, all 

predictions provide information regarding 

the environmental parameters of Red Kite 

habitat, which can be used in conjunction 

to improve overall conservation efforts 

(Araújo and New, 2007; Coetzee et 

al.,2009; Farrand et al., 2011; Marmion et 

al., 2009; Oppel et al., 2012).  

CONCLUSION 

All three models produced predictions with 

AUC values greater than 0.7. MaxEnt 

removed the bias of the sighting data most 

effectively. However, both BRT and RF 

yielded suitable predictions, if the nature of 

the sighting data was accounted for during 

interpretation. The SDM suggests that Red 

Kite habitat is dictated by agricultural 

activity, low seasonal temperature variation 

and the presence of nearby conservation 

areas.  

Although environmental preferences of 

Red Kites were approximately determined, 

the various statistical methods placed 

importance on differing environmental 

variables. This produced contrasting 

spatial habitat predictions and illustrates 

why a single species distribution model is 

insufficient to determine Red Kite 

conservation areas. However, an 

ensemble of SDM can produce useful and 

accurate predictions, even from 

unrepresentative species data.  

Future conservation efforts could 

incorporate a variety of modeling 

techniques, environmental variables and 

available species presence data.  

Research is needed to understand the 

causes of varying levels of environmental 

importance and the effect of using different 

variables.  
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